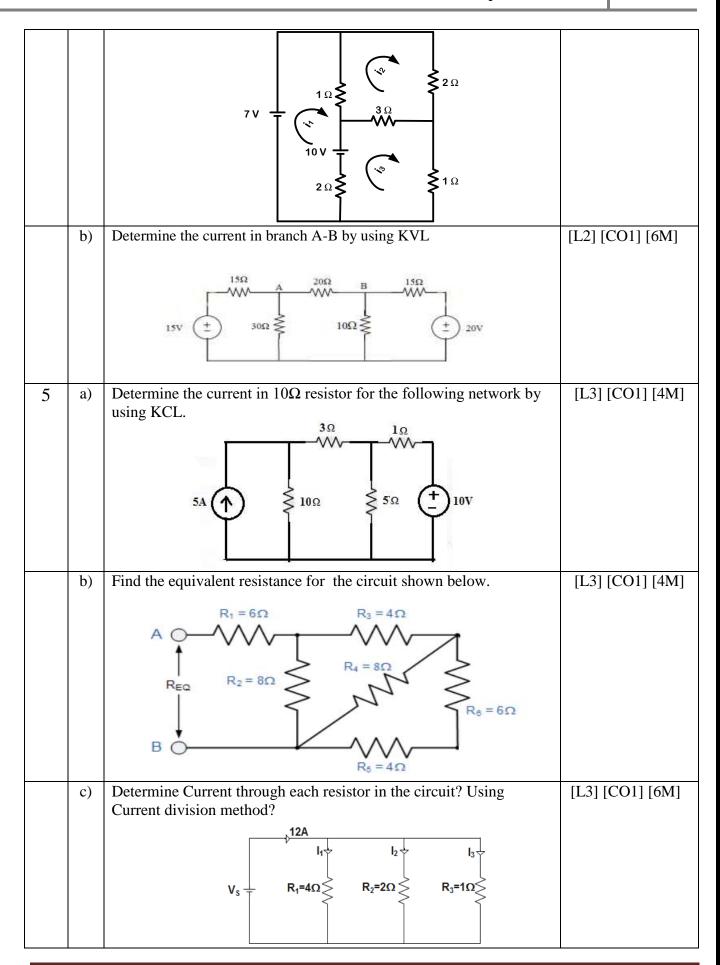


SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

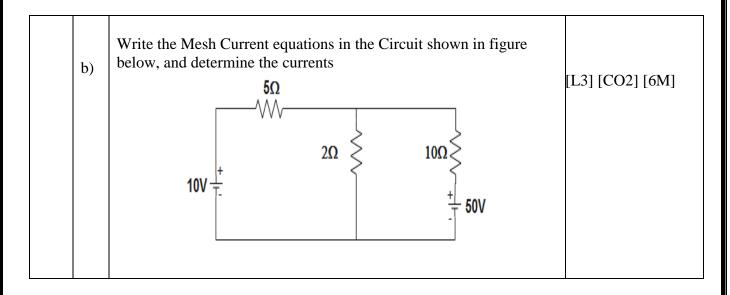
(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu) (Accredited by NAAC with "A+" Grade & ISO 9001: 2008 Certified Institution)

QUESTION BANK (DESCRIPTIVE)

Subject with Code: PRINCIPLES OF ELECTRICAL CIRCUITS (20EE0253)


Course & Branch: B. Tech-ECE

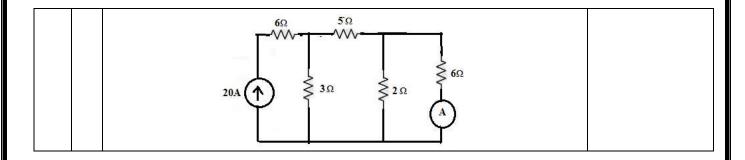
Year & Semester: I - B. Tech. & I - Semester **Regulation**: R20


UNIT-I

FUNDAMENTALS OF ELECTRIC CIRCUITS

1.	a)	Define active and passive elements with suitable examples.	[L2] [CO1][2M]
	b)	Write the difference between active and passive elements	[L2] [CO1][2M]
	c)	Explain in detail about R,L, and C elements with voltage and current	[L2] [CO1][8M]
2.	a)	equation. Three resistances of values 20, 30 and 50 are connected in series across 20 V DC supply. Calculate, i) Equivalent resistance of the circuit. ii) Total current from the supply. iii) Voltage drop across each resistor.	[L3] [CO1] [4M]
		iv) Power dissipated in each resistor	
	b)	Determine the Equivalent capacitance when the two capacitor are connected series and parallel	[L3] [CO1] [2M]
	c)	Three capacitances of values 0.1, 0.3 and 0.5 mF are connected in series across 10 V DC supply. Calculate, Equivalent capacitance of the circuit.	[L3] [CO1] [2M]
	d)	Determine the Equivalent inductance when the two inductor are connected series and parallel	[L3] [CO1] [2M]
	e)	Two inductances of values 2H and 3H are connected in parallel across 5V DC supply. Calculate, Equivalent inductance of the circuit.	[L3] [CO1] [2M]
3.	a)	State and explain Ohm's law with limitations.	[L2] [CO1] [6M]
	b)	State and prove Kirchhoff's voltage law with suitable examples.	[L3] [CO1] [3M]
	c)	State and prove Kirchhoff's current law with suitable examples.	[L3] [CO1] [3M]
4	a)	Find i_1 , i_2 , i_3 for the given circuit by using Kirchhoff's laws?	[L3] [CO1] [6M]

6	a)	Explain in detail about star to delta transformation of a resistive	[L3] [CO1] [6M]
		network.	r 2r 2r1
	b)	Explain in detail about delta to star transformation of a resistive	[L3] [CO1] [6M]
		network.	
7		Find the voltage to be applied across AB in order to drive a current of 5A into the circuit.	[L3] [CO1] [12M]
		3Ω	
		√	
		2Ω W 5Ω	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		3Ω 1 9Ω 1 0Ω	
			HANGOAN A
8	a)	Explain about source transformation briefly.	[L2][CO1][6M]
	b)	Determine the equivalent current source between the terminals A-B.	[L3] [CO1] [6M]
		$R_1=1\Omega$ \geqslant $R_2=2\Omega$ \geqslant \downarrow	
		V ₁ =6V	
9	a)	Explain nodal analysis by taking one example	[L2][CO2][6M]
	b)	Determine the current in 5Ω resistor for the following network by	[L3] [CO2] [6M]
		using nodal analysis.	
		v. V2	
		v_1 v_2 v_2 v_3 v_4 v_4 v_5 v_4 v_5 v_5 v_6 v_7 v_8 v_8 v_8 v_8 v_9	
		$ \begin{cases} 10 \Omega & \begin{cases} 20 \Omega & (\checkmark) 4 \Lambda \end{cases} $	
		> 20 32 V) 4A	
		<u> </u>	
10.	a)	Determine the mesh currents for the circuit shown below.	[L3] [CO2] [6M]
10.			[-] [] [()
		200V + 2 Ω \ \bigsig 8 Ω	
		3Ω 16Ω ≶	
		100V + \$24 Ω	
		ΣΩ.	



<u>UNIT - II</u> NETWORK THEOREMS

1.	a)	State & explain Super position theorem	[L1] [CO3][4M]
	b)	By using superposition theorem find the current flowing through the 3 ohm resistor $\begin{array}{c c} 5\Omega & 10\Omega \\ \hline \\ 20V & + \end{array}$	[L3] [CO3] [8M]
2.		Verify Superposition Theorem for 4Ω resistor for the following circuit. 80 V + 30 Ω 50 Ω 10 A	[L3][CO3][12M]
3.	a)	State & explain Thevenin's theorem	[L1] [CO3] [4M]
	b)	Find load current by using Thevenin's theorem for the following circuit where $R_{\rm L}$ =3 Ω .	[L3] [CO3] [8M]

		$ \begin{array}{c c} 2\Omega & 2\Omega \\ \hline \end{array} $ $ \begin{array}{c c} 4\Omega & \\ \end{array} $	
4.	a)	State Norton's theorem.	[L1] [CO3] [2M]
	b)	Find Norton's equivalent circuit across AB for the circuit shown. $ \begin{array}{c} 3 \Omega \\ \hline 4 \Omega \end{array} $ B	[L3] [CO3] [5M]
	c)	Find the Norton's equivalent for the circuit shown below. $\begin{array}{c c} & & & 12 \ \Omega \\ \hline & & & & & & A \\ \hline & & & & & & & & A \\ \hline & & & & & & & & & & & \\ \hline & & & & &$	[L3][CO3][5M]
5.	a)	State and prove maximum power transfer theorem.	[L3][CO3][6M]
	b)	Determine the maximum power delivered to the load resistance R_L $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[L3][CO3][6M]
6.	a)	State and explain Reciprocity theorem with suitable example.	[L3][CO3][6M]
	b)	Verify reciprocity theorem for the network shown in below figure.	[L3][CO3][6M]

		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
7.	a)	State & explain Milliman's theorem	[L3][CO3][6M]
	b)	Find the current $I_{\rm L}$, use millman's theorem as shown in figure below.	[L3][CO3][6M]
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8.	a)	State and explain Tellegen's theorem with one example.	[L3][CO3][6M]
	b)	Verify Tellegen's theorem for the circuit shown in below figure. $ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & &$	[L3][CO3][6M]
9.	a)	State Compensation theorem.	[L3][CO3][4M]
	b)	Find the current passing through the branch AB using compensation theorem when the 3Ω resistance is changed to 9Ω .	[L3][CO3][8M]
10.		Determine the ammeter reading where it is connected to 6Ω resistor as shown in below figure. The internal resistance of the ammeter is 2Ω .,by using compensation theorem.	[L2][CO3][12M]

<u>UNIT – III</u>

DC TRANSIENT ANALYSIS

1	a)	Define transient response.	[L2][CO4][3M]
	b)	Derive the Transient Response of series RL-circuit with D.C excitation.	[L2][CO4][6M]
	c)	Explain the application of transient analysis.	[L2][CO4][3M]
2	a)	A series RL circuit with $R=30\Omega$ and $L=15H$ has a constant voltage $V=60v$ applied at $t=0$.Determine the current "I", voltage across resistor and voltage across inductor.	[L4][CO4][6M]
	b)	A Series RL circuit with R= 50Ω and L= $10H$ has constant voltage V= 100 volts applied at t= 0 by the closing the switch find the complete current.	[L4][CO4][6M]
3	a)	A series RL circuit with R=30 Ω and L=15H has a constant voltage V=60V applied at t=0 as shown in figure below. Determine the current I, the voltage across the resistor and across the inductor.	[L4][CO4][6M]
	b)	Derive the Transient Response of series RC-circuit with D.C excitation.	[L2][CO4][6M]
4	a)	A series RC circuit consists of a resistor of 10Ω and capacitor of 0.1 F with a constant voltage of 20v, is applied to the circuit at t=0.0btain the current equation. Determine the voltage across the resistor and the capacitor.	[L4][CO4][6M]
	b)	Define the term initial conditions and transient response.	[L2][CO4][6M]
5		Determine The Current I for T>0 If $V_c(0) = 9V$ For The Circuit Shown In Fig.	[L2][CO4][12M]

		$\begin{array}{c c} & & & & & & & & & & \\ & & & & & & & & $	
6	a)	A Series RC circuit consists of R=5000Ω,C=20MF has a constant voltage	[L4][CO4][12M]
		V=100v applied at t=0 and capacitor has no initial charge. Find the	
		equation of i, V _R and V _C .	F 435 G 6 435 G 63
7	a)	Define Time constant of RL circuit.	[L4][CO4][6M]
	b)	Define Time constant of RC circuit.	[L4][CO4][6M]
8		Derive the Transient Response of series RLC-circuit with D.C excitation.	[L2][CO4][12M]
9	a)	The Circuit Consists Of Resistance=20 Ohm, Inductance = 0.05H,	[L2][CO4][6M]
		Capacitance = 20uF in Series With a 100V Constant at t=0. Find The	
		Current Transient.	
	b)	What is Laplace transform. Write the advantages.	[L2][CO4][6M]
10	a)	Derive the Laplace Transform of Series RL Circuit.	[L2][CO4][6M]
	b)	Derive the Laplace Transform of Series RC Circuit	[L2][CO4][6M]

UNIT -IV SINGLE PHASE AC CIRCUITS

1	a)	Derive an expression for RMS values of sine wave form.	[L2][CO5][6M]
	b)	Find the rms value for the following waveform	[L2][CO5][6M]
		(fi) Vm	
2	a)	Derive an expression for average values of sine wave form	[L4][CO5][6M]
	b)	An alternating current is expressed as I = 14.14 sin 314t. Determine. (i) Maximum current (ii) RMS current (iii) Frequency (iv)Instantaneous current when t = 0.02msec.	[L2][CO5][6M]
3	a)	Define power factor and form factor	[L2][CO5][4M]
	b)	Derive an expression for the current and impedance for a series RL circuit excited by a Sinusoidally alternating voltage. Draw the phasor diagrams.	[L2][CO5][8M]
4	a)	Define apparent power, active power and reactive power	[L2][CO5][6M]
	b)	Define Admittance and impedance	[L2][CO5][6M]

5	a)	Define active power and reactive power	[L4][CO5][6M]
	b)	Explain the phasor relation for R, L & C elements.	[L4][CO5][6M]
6	a)	A resistor of 50Ω and inductance of 100mH are connected in series across	[L2][CO5][6M]
		200V, 50Hz supply. Determine the following	
		(i) Impedance (ii) current flowing through the circuit	
		(iii) power factor	
	b)	Define power factor and apparent power.	[L4][CO5][6M]
7		Derive an expression for the current and impedance for a series RC circuit	[L4][CO5][12M]
		excited by a Sinusoidally alternating voltage. Draw the phasor diagrams.	
8		Derive an expression for the pure resistance, inductance and capacitance	[L4][CO5][12M]
9		Derive an expression for the voltage and impedance for a series RLC	[L4][CO5][12M]
		circuit excited by a Sinusoidally alternating voltage.	
10		A coil of resistance 10Ω and inductance of 0.1H is connected in series	[L4][CO5][12M]
		with a 150μF capacitor across a 200V, 50Hz. Calculate	
		(i)inductive reactance (ii) capacitive reactance (iii) impedance	
		(iv) current (v) power factor (vi) power in the circuit.	

<u>UNIT -V</u> TWO PORT NETWORK &FILTERS

1	a)	Define Two port network and explain about Impedance parameters.	[L2][CO6][6M]
	b)	Find the Z-parameters of the network shown in below figure.	[L4][CO6][6M]
2	a)	Explain about short-circuit parameters.	[L2][CO6][6M]
	b)	Find the Short-circuit parameters for the circuit shown in figure.	[L2][CO6][6M]
3	a)	Determine the y-parameters of the following network.	[L4][CO6][6M]

		$ \uparrow \qquad \downarrow \qquad $	
	b)	Find the transmission parameters for the circuit shown in figure. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	[L2][CO6][6M]
4	a)	Explain about ABCD-parameters	[L2][CO6][6M]
	b)	Find the transmission parameters for the circuit shown in figure. $ \begin{array}{c c} & & & \\ & $	[L2][CO6][6M]
5	a)	Explain about h-parameters in terms of y-parameters	[L2][CO6][6M]
	b)	Find the h-parameters of the network shown in figure. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[L2][CO6][6M]
6	a)	Define filters and explain classifications of filters.	[L2][CO6][6M]
	b)	Draw the characteristics curve for LPF and HPF.	[L2][CO6][6M]
7		Explain about Constant-K low-pass filter in detail.	[L2][CO6][12M]
8	a)	List the advantage of constant K filter.	[L2][CO6][4M]

	b)	Design a High –pass filter having a cut-off frequency of 1kHz with a load	[L2][CO6][8M]
		resistance of 600Ω .	
9		Explain about Constant-K High-pass filter in detail.	[L2][CO6][12M]
10	a)	Explain about Constant-K band -pass filter in detail	[L2][CO6][8M]
	b)	Design a Band-elimination filter having design impedance of 600Ω and cut-off frequencies $f_1 = 2kHz$ and $f_2 = 6kHz$.	[L2][CO6][4M]

PREPARED BY: Siva Subramanyam, S Divya, Dr. Rahul Bhattacharjee